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Noise-Induced Transitions to Chaos

INTRODUCTION

Multistable systems can exhibit irregular (i.e., neither periodic nor quasiperiodic)
motion with jumps. Such motion is referred to as basin-hopping or stochastic chaos
when induced by noise, 1 and deterministic chaos in the absence of noise. Deter-
ministic and stochastic chaos have hitherto been viewed as distinct and have been
analyzed from different, indeed contrasting, points of view.

For a wide class of systems, stochastic and deterministic chaos can be not
only indistinguishable phenomenologically but also closely related mathematically.
We show this for one-degree-of-freedom multistable systems whose unperturbed
counterparts have homoclinic and heteroclinic orbits. (Extensions of the theory to
higher-degree-of-freedom and spatially extended systems are underway.) When per-
turbed by weak damping and deterministic periodic forcing, the dynamics of these
systems are periodic or qua.siperiodic over certain regions of the system parameter
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space. Over other regions of parameter space the dynamics may be sensitively de-
pendent upon initial conditions; i.e., exhibit a topological equivalence to the Smale
horseshoe map. We show that a transition from periodic or quasiperiodic motion to
chaotic motion with sensitive dependence upon initial conditions is possible through
the introduction of noise.

We develop computable expressions providing: (1) necessary conditions for the
occurrence of stochastic chaos with jumps, and (2) measures of chaotic transport
characterizing the” intensity” of the chaos. These expressions depend on the distri-
bution and, in particular, the mean-square spectrum of the noise. We obtain these
expressions using: (1) the Melnikov transform and its attendant notion of phase
space flux, and (2) tail-limited noise including uniformly bounded path approxima-
tions of Gaussian noise and shot noise.

The remainder of the chapter is divided into five sections. The first section
presents results for systems perturbed by weak additive noise. These results are
used in the following section to treat Duffing oscillators with weak near-Gaussian
noise. In particular, we describe results for the Duffing oscillator with attracting
homoclinic orbits which admit comparison with results based on the Fokker-Planck
equation. In the third section, we present results for multiplicatively perturbed
systems. These results are used in the fourth section with a recently introduced
model of shot noise to treat the Duffing oscillator with shot noise-like dissipation.
The Iast section contains summary comments.

SYSTEMS WITH ADDITIVE EXCITATION

We consider the integrable, two-dimensional, one-degree-of-freedom dynamical sys-
tem with energy potential V governed by the equation of motion

x = -v’(z), XE’R. (1)
>.. ...”

The system governed by Eq. (1) is assumed to have two hyperbolic fixed points
connected by a heteroclinic orbit Zs = (zS (t), is (t)). If the two hyperbolic fixed
points coincide, then 2, is homoclinic. A perturbative component is introduced
into the system governed by Eq. (1), giving

The perturbative function w : ‘RZ x 7? + 7?, is assumed to satisfy the Meyer-Sell
uniform continuity conditions15 and only the near-integrable case, O < & << 1, is
considered. In this section, we restrict our attention to the case of additive excitation
and linear damping. For this case,
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and system (2) takes the form

i = –V’(z) + E[yg(t) + pG(t) – K*]. (4)

Here g and G represent deterministic and stochastic forcing functions, respectively.
g is assumed to be bounded, Ig(t) I S 1, and uniformly continuous (UC). The pa-
rameters p, v and K are nonnegative and fix the relative amounts of damping and
external forcing in the model.

Consider the random forcing

(5)

where {vn,~~;n = 1,2, ..., N} are independent random variables defined on a
probability space (Q, 13,P), {v~; n = 1,2, ..., N} are nonnegative with common
distribution WO,{+n; n = 1,2,..., N} are identically uniformly distributed over the
interval [0, 27T]and N is a fixed parameter of the model. S and a in Eq. (5) are
defined below. The process G is a randomly weighted modification of the Shlnozuka
noise model. Is’ 19

Let Y denote the linear filter with impulse response h(t) = i,(–t) where ~~(t)
is the velocity component of the orbit ?S of the system governed by Eq. (1). F is
called the system orbit filter and its output is F[u] = u * h where u = u(t) is the
filter input and u * h is the convolution of u and h. S in Eq. (5) is then defined to
be modulus S(u) = Ill(u) [ of the orbit filter transfer function

I

w

H(v) = h(t)e-~vtdt (6)
-co

and a in Eq. (5) is

/

co
~2 = self. ,&

o

Let the distribution Ill. of the angular frequencies Vn in Eq. (5) have the form

J
V.(A) = -$ ~s2(v)!v(cb), (7)

where A is any Borel subset of 73 S is assumed to be bounded away from zero
on the support of V, S(v) > S’m > 0 a.e. Q. Under this condition S is said to be
V-admissible. If S is W-admissible, then it is also bounded away from zero on the
support of I?. and 1/S(vn) < 1/Sm as. !lO. We have the following results for G
and its filtered counterpart Y[G].

Fact G1. The processes G and 3[G] are each zero-mean and stationary.
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Fact G2. If S is V-admissible then G is uniformly bounded with lG(t, w)l ~

~=forallt~~andu~~.

Fact G3. The marginal distribution of .F[G] is that of the sum

(z
2N

‘F
CosUn

n=l

where {Un; n = 1, ..., N} are independent random variables uniformly
distributed on the interval [0, 27r].

Fact G4. The processes G and 7[G] are each asymptotically Gaussian in
the limit as N + co. In particular, the random variables G(t) and 7[G](t)
are, for each t, asymptotically Gaussian.

Fact G5. The spectrum of G is 27r* and G has unit variance.

Fact G6. The spectrum of 7[G] is 27TV0and its variance is 02.

Fact G7. Let the spectrum T of G be continuous. Then 7[G] is ergodic.

Proof of the first six of these results can be found in Frey and Simiu.7 Fact G7 is
related to the fact that Gaussian processes with continuous spectra are ergodic. 10’14
It follows from Fact G5 that a modified Shinozuka noise process G as in Eq. (5)
can be constructed for any given spectrum.

Five realizations of G with bandlimited spectrum are shown for comparison in
Figure 1 together with five realizations of Gaussian noise with the same spectrum.
S(v) = sechv is used in this example.

Bandllmlted Modlfled

Shmozuka Noise (N=40)

M

Bandlimited

Gaussian Noise

FIGURE 1 Realizations
of modified Shinozuka and
Gaussian noise processes with

WVJWI!hlm
identical bandlimited spectra
-n.+ —
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Let us now consider the effect of the perturbation ew(z, i, t) on the global ge-
ometry of Eq. (1). For sufficiently small perturbations, the hyperbolic fixed points
of Eq. (1) are perturbed to a nearby invariant manifold and the stable and unstable
manifolds associated with the homoclinic or heteroclinic orbit of Eq. (1) separate.2
The distance between the separated manifolds is expressible as an asymptotic ex-
pansion dM+O(c2) where J4 is a computable quantity called the Melnikov function.
The separated manifolds may intersect transversely and, if such intersections oc-
cur, they are infinite in number and define lobes marking the transport of phase
space24. The amount of phase space transported, the phase space flux, is a measure
of the chaoticity of the dynamics. 3 The lobes defined by the intersecting manifolds
generally have twisted, convoluted shapes whose areas are difficult to determine,
making analytical calculation of the flux difficult, if not impossible. For the case
of small perturbations, however, the phase space flux can be expressed in terms of
the Melnikov function. The average phase space flux has the asymptotic expansion
E@ + 0(e2) where Q, here called the flux factor, is a time average of the Melnikov
function:

T

@=liml
J

M+(O1 – ‘t,82 – t)dt,
T-ZQ 2T .T

(8)

where M+ is the maximum of O and M.3124
To apply Melnikov theory to a deterministic excitation g, g must be bounded

and UC. In the case of random perturbations G, the theory requires that G be
uniformly bounded and uniformly continuous across both time and ensemble. The
noise model G in Eq. (5) is uniformly bounded as noted in Fact G!? However, G
does not necessarily have the needed degree of continuity.

We define a stochastic process X to be ensemble uniformly continuous (EUC)
if, given any 81 >0, there exists 62 >0 such that if tl,tze 7? and Itl – tzI<62,
then [Xfl(u)– Xt,(u)I< & for all w E Q A stochastic process can have UC paths
and fail to be EUC. G is EUC if it is bandlimited.

Conditions on the perturbation function w in Eq. (3) sufficient for the Melnikov
function to exist are that g be UC and that G be EUC,.eThe Melnikov function for
the system governed by Eq. (4) is then given by the Melnikov transform M [g, G]
of g and G:

M(tl, t4 =M[g, G]

/“ /

co
= —K i:(t)dt + ‘y i. (t)g(t + tl )dt

-m —m

/

m

+p i.(t)G(t + t2)dt.
-ccl

Since h(t)= i.(–t),denoting the integral of& by 1, we obtain

(9)

(lo)
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The expectation and variance of M(tl,t2)are, respectively,

EIM(tl , tz)] = –IK + ~F[g](t),

/

w

Vw[it’l(tl,tz)]= pw = p2’ Sqv)v(dv).
o

iVf(t~,t2) is, like G, a Gaussian process in the limit as N s co indicating that
the presence of even vanishingly small noise causes the Melnikov function to have
simple zeros. The state of the system is thus driven from one basin of attraction to
that of the competing attractor. Such motion is interpretable as chaotic motion on
a single strange attractor.24

Of course, the infinitely long tails of the marginal distributions of Gaussian noise
are physically unrealistic. Expressions for random forcing with tail-limited marginal
distributions can be obtained through nonlinear transformations of Eq. (5). Such
tail-limited excitation processes (which may represent, e.g., wave forces whose mag-
nitude is limited by physical constraints) are of interest in engineering applications.
Ilom such noise models, the tail-limited marginal distributions of the Melnikov
function can be determined, allowing criteria to be developed to guarantee that the
Melnikov function has no simple zeros, i.e, that jumps (snap-through dynamics)
associated with chaos do not occur.

We now proceed to develop formulae for the average flux factor@. Substituting
Eq. (10) into Eq. (8) we obtain

Existence of the limit in Eq. (11) depends on the nature of the excitations g and G
and their corresponding convolutions .T[g] = g * h and 7[G] = G * h.

To ensure the existence of the limit in Eq. (11), we assume that g is asymptotic
mean stationary (AMS): a stochastic process X(t) is defined to be AMS i~ the
limits

~+m ; ~: E[l~(X(t))]dtIJX(A) = lim (12)
>-----

exists for each real Borel set A c 7?. Here 1A is the indicator function, 1A(z) =
1 for z ~ A and 1,4(z) = O otherwise. This definition applies, in particular, to
deterministic functions X(t). If the limits in Eq. (12) exist, then px is a probability
measure.13 px is called the stationary mean (SM) distribution of the process X.

The deterministic forcing function g is assumed to be AMS SO) due to the
linearity of ~, ~[g] is AMS and we denote the SM distribution of .F[g] by Kqgl.
Assume the spectrum of G is continuous. Then, according to Fact GY, F[G] is
ergodic. Ergodicity implies asymptotic mean stationarity,g so -F[G’] is AMS also

with SM dkjtribution pz[~l. All AMS deterministic functions are ergodlc so 7[9]>

like 7[G], is ergodic. Inasmuch as 7[g] is deterministic, F[g] and ~[G] are jointly
ergodic with SM distribution p~[gl x PqG]. 7 Then the limit Eq. (11) exists and can
be expressed in terms of the SM distributions Prlgl and p~[q.
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THEOREM 1. (See Frey and Simiu.7) Suppose g is AMS and .F[G] is ergodic. Then
the limit in Eq. (11) exists, the flux factor @ is nonrandom and

@ = E[(~A + pB – IR)+]

where A is a random variable with distribution equal to the SM distribution p~[~l
of the function F[g], B is a random variable with distribution equal to the SM
distribution /.L~[G]of the process 7[G] and A and B are independent.

Theorem 1 applies broadly to uniformly bounded and EUC noise processes G
with ergodic filtered counterpart .F[G]. The modified Shinozuka process (5) belongs
to this class provided it is @admissible with continuous, bandlimited spectrum.
Moreover, Gin (5) is stationary and 7[G] is asymptotically Gaussian. Hence P~@]
is the marginal distribution of .F[G] and, for large N, B is approximately Gaussian
wit h zero mean and variance oz.

THEOREM 2. (See Frey and Simiu.7) Suppose g is AMS and G is ‘a Q-admissible
modified Shinozuka process with continuous bandlimited spectrum. Then the flux
factor @ is approximately

!OG

where Z is a standard Gaussian
decreases as N is made larger.

E[(yA + paz – IK)+] (13)

random variable. The error in thk approximation

DUFFING OSCILLATOR WITH ADDITIVE NEAR-GAUSSIAN
NOISE

The potential energy of the Duffing oscillator is V(z) = Z4/4 – Z2/2 with corre-
sponding equation of motion, i = z – z 3. The unperturbed Dfiffing oscillator has
a hyperbolic fixed point at the origin (z, i) = (O,O) in phase space connected to
itself by symmetric homoclinic orbits. These orbits are given by

(28)=+( ‘iSech’ ).-&secht tanh t

The impulse response h of the righthand (+) orbit is h(t)= x=(–t)= @echt tanh t.
Thus 1 = 4/3 in Eq. (10).
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OSCILLATOR WITH LINEAR DAMPING

We consider first the forced Duffing oscillator
in.g:

with additive noise and linear damp-

i = z – Z3+ e[~g(t)+ pG(t) – Ki]. (14)

Here, -y 2 0, K a O and p 2 0 are constants, g is deterministic and bounded

Ig(t)l S 1, and G is the modified Shinozuka noise process reviewed in the previous
section.

The flux factor @ for this system is given exactly in Theorem 1 and approx-
imately in Theorem 2. The approximation in Theorem 2 was obtained by repre-
senting the marginal distribution P~[G] of 7[G] by a Gaussian distribution and is
appropriate for large N. However, because the Gaussian distribution has infinite
tails, Theorem 2 indicates that the flux factor is nonzero for all levels p > 0 of
noise.

Consider the case y = O. According to Theorem
Using Fact G3, we take

BN = [X
2N

F
Cosun

n=l

1, @ = ~[(pa~N – 4~/3)+].

and define

@ = g, p’ = --Q%
B,=BN+~

tit$ 2V’ZV “

Then
@ = E[(p’@B’ – 1/2) – 1)+].

0.0 05 1.0 15 20

(15)

,.--’ -

FIGURE 2 The flux factor of W as
a function of the noise strength p’
for various values of N. TN is the
threshold for positive flux.
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The support of B’ is the interval (O, 1) and is approximately beta-distributed16 with
density

‘(a + ‘) ta-l (1 - t)~-1,
r(~)r(p)

O<t<l

where the parameters a > 0 and ~ > 0 of the distribution are chosen so that
the mean and the variance of the beta distribution are the same as those of B’.
0’ = 0’ (p’, N) is plotted in Figure 2 as a function of p’ for various values of N
using Eq. (16). For comparison, the limiting Gaussian noise case N a co is also
plotted using Eq. (13).

OSCILLATOR WITH ATTRACTING HOMOCLINIC ORBIT

If the damping term in Eq. (14) has the form 6(K – @2)z, under suitable condi-
tions on the coefficients K.and /3 the homoclinic orbits of the unperturbed flow are
attracting; i.e., among all orbits passing through a neighborhood of the homoclinic
orbit, almost all can be found to be in the vicinity of the homoclinic orbit at times
in the far future or past. 5 The dynamics of this oscillator have been considered by
Stone and Holmes22 in the case of white Gaussian noise forcing with spectral in-
tensity p. They found from calculations based on the Fokker-Planck equation that
the time T between consecutive returns to a neighborhood of the saddle point is

T = C - (l/~u) hl(~~),

where c is a constant and & is the eigenvalue associated with the unstable manifold
of the saddle point. r can be shown to play a prominent role in determining the
spectrum of the oscillator dynamics. Using a calculation of the phase space flux with
the noise representation in Eq. (5), thk expression for T can be shown to apply not
only to white noise, but more generally to the case of colored noise.21 The phase
space flux approach has the added advantage of being simpler to apply.

SYSTEMS WITH MULTIPLICATIVE EXCITATION

We turn now to a more general form for w, the multiplicative excitation model:

W(Z, i, t)= -y(z,i)g(t) + P(L i) G(t). (16)

As in the additive excitation model, the function g represents deterministic forcing
while G(t) = G(t, w), u ~ Q is a stochastic process representing a random forcing
cent ribution.
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The Melnikov function is calculated as in Eq. (9) to be

I

w

M(tl, t2) = M[g, G] = i,(t) [~(zs(t), i$(t))g(t+tl)+p(z, (t), i8(t))G(t+tz)]dt.
—Ix

We define orbit filters 31 and .F2 with impulse responses

hi(t)= i.(–t)~(z.(–t),i.(–t)), h2.(t) = i.(–t)p(z.(–t),i.(–t))

and corresponding transfer functions 111(v) and Hz(v). Then

M(tl,tz)= fi[g](tl) + fz[G](tz). (17)

Generalizing the additive excitation model Eq. (3) by allowing the coefficients y
and p to depend on the state (z, i) of the system has, according to (17), two
significant consequences. First, the orbit filter .F in the additive model is replaced
in the multiplicative model by two different orbit filters -TI and $2 and, second, the
filters %1 and 32 are linear, time-invariant and noncausal with impulse responses
given solely in terms of the orbit 28 of the unperturbed system and the functions
v and p.

Substituting Eq. (17) into Eq. (8) gives

~:m & &,[g]((?, - S) + 7~2[G](02 - S)]+dS.@=hm- (18)

Just as in the case of the additive excitation model, existence of the limit in Eq. (18)
hinges on the joint ergodicity of the function .Fj [g] = g* hl and the process .Fz[G] =
G*h2.

THEOREM 3. Consider the system governed by Eq. (2) with perturbation function
w as in Eq. (16) such that g is AMS and ~Z [G] is ergodic. Let VF1[gI-and Pzz [C] be
the SM distributions of rl [g] and 72[G], respectively. Then the limit in Eq. (18)
exists, the flux factor @ is nonrandom and

@ = E[(7A + pB)+]

where A is a random variable with distribution pZl [g], B is a random variable with
distribution pz, [G] and A and B are independent.

Theorem 3 is an extension of Theorem 1 to the general case of multiplicative
excitation. Theorem 3 can in turn be extended to systems with more general planar
vector fields than that of the system governed by Eq. (2). only the orbit filters 71
and .F2 change in these more generalcases;the form of the flUX factor @ given in
Theorem 3 remains the same.
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DUFFING OSCILLATOR WITH SHOT NOISE-LIKE DISSIPATION

As an example of a system with multiplicative shot noise, we consider the Duffing
oscillator with weak forcing and non-autonomous damping:

& = z – Z3+ e[~g(t) – /t(KN(t) + q)i]. (19)

Here -y ~ O, K ~ O and q ~ O are constants, g is deterministic and bounded ]g(t)l ~
1, and KN is a form of shot noise. The perturbation in Eq. (18) is a particular case
of the multiplicative excitation model (16) with 7(z, ~) = ~, p(z, i) = –Ki, and
G(t) = KN (t)+ q. ~(K~ (t)+ q) in Eq. (18) serves as a time-varying damping factor
and plays the same role as the constant K in Eq. (4). The two terms Kq and K,K~
represent, respectively, viscous and shot noise-like damping forces. We assume for
thk example that ~ = O. We also assume the shot response r (see below) of KN to
be nonnegative in this example so that the factor /cKN is nonnegative.

The usual model of constant-rate shot noise is a stochastic process of the
forml 1~23

K(t) = ~ r-(t – Tk), (20)
kcZ

where Z is the set of integers, {T~, k c 2} are the epochs (shots) of a Poisson
process with rate A >0 and T is bounded and square-integrable,

J

co
T2(t)dt < CO.

-co

r is call the shot response of the process K.
The shot noise model K in Eq. (20) is neither bounded nor EUC and cannot

be used in conjunction with Melnikov theory in calculating the phase space flux in
chaotic systems. A modification of the model which approximates K and yet has
the requisite path properties has been developed:

,-
~N

KN(t) = ~~r(t–TjkN –Aj –T)

jEZ k=l

(21)

where N is a positive integer, Aj = 2N(j – l/2)/A and {T, Tjkf./3j c Z, k =
1,... , 2N} are independent random variables such that for each N and j, {TjkN, k =
1,2 ,..., 2N} are identically uniformly distributed in the interval (Aj, Aj+l] and T is
uniformly dktributed between O and 2~/A As in the usual shot noise model (20),
~ is here again the rate of the process; it is the mean number of epochs (shots)
TjkN per unit time. We assume just as for K, that r in Eq. (21) is bounded and
square-integrable. We further assume that r is UC and that the radial majorant

T“(t) = Sl:l& IT(7){
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of the shot response is integrable; i.e.,

/

co

?-”(t)dt< co.
-ccl

According to this specification of KN, realizations of the process are obtained by
partitioning the real line into the intervals (Aj, Aj+l] of length 2N/A with common
random phase T and then placing 2* epochs independently and at random in
each interval. The random phase T eliminates the (ensemble) cyclic nonstationarity
produced by the partitioning by (Aj, Aj+l].

It can be shown that KN and .F[KN] are stationary processes, that KN con-
verges in distribution4 to the shot noise K with the same shot response T and rate
J, that .F[KN] is also a shot noise of the form Eq. (21) with shot response r * h,
and .F[KN] converges in distribution to the shot noise K with shot response r * h
and rate A, that the variances of KN and .F[KN] converge, respectively, to those of
K and F[K], that the spectrum of KN converges weakly4 to the spectrum of the
shot noise K with the same shot response r and rate ~, and that the spectrum of
3[KN] converges weakly to the spectrum of the shot noise K with shot response
r * h and rate ~. It can dso be shown that KN is uniformly bounded for all N,
that KN is EUC for all N, and that KN and .F[KN] are each ergodic for all N.
Hence, for large N the shot noise KN closely approximates the standard shot noise
model K in all important respects. Also, KN, unlike K, can be used in Melnikov’s
method-type calculations of the flux factor. Additional details can be found in Frey
and Simiu.8

According to Theorem 3, the Melnikov function for the Duffing oscillator
Eq. (19) is

M(tl,t2)= Fl[g](tl) + 72[G](t2)

where
hl (t) = ~i, (–t)= -@sech ttanh t

and
hz(t) = –K&-t) = –2~sech2t tanh2 t. .,/.

The corresponding moduli of the filters ~1 and ~2 are

and

/

co
S2(V) = 4)C sech2t tanh2 t cos vtdt.

o
We have S1(()) = (Jso the d,c. component (if any) of g is completely removed by 71
and has no effect on the Melnikov function. KN does have a d.c. component; KN
is ergodic so its d.c. component is E[K~] = M?(O) where

co

R(O) = / r(t)dt >0.
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S2(0) = 4K/3 >0 so the d.c. component of KN passed by F2 is

4RAR(0)
E[7z[Kiv]] = EIK~]Sz(0) = ~ .

The presence of a d.c. component plays a pivotal role in shifting the parametric
threshold for chaos. See Frey and Simiu7 for further discussion.

Assume the deterministic forcing function g is AMS. KN is uniformly bounded
and EUC and 72 [KN] is ergodic. Thus .F1[g] and ~z [KN] are jointly ergodlc. By
Theorem 3, the flux factor @ exists and

@ = E[(A – ~N)+]

where the distribution of A is P311~1,the distribution of BN is PF2 [K~I and A and

BN are independent.
We noted earlier that the distribution of ~z [~N] is, for large N, approximately

that of the shot noise 72 [K]. This is the basis for the following theorem.

THEOREM 4. The flux factor @ for the Duffing oscillator (19) with weak forcing
and shot noise damping coefficient tcKN is approximately

where A is I.Lr,[gI-distributed, B is PF2IK1-distributed, A and B are independent
and K is the shot noise (20). This approximation improves as N increases.

@ can be calculated numerically as follows for given system parameters v, 7
and K and shot parameters A and r. Make the following definitions:

@f– Q /&~, B’= &,
-yS1(v) ‘ -/Sl(v)

~, = 16M?2(0) 3~J

9J ‘ “ = 47s1(V)R(0) ‘ ‘-”-

where

J=
J

m (r * h)2(t)dt.
-co

Then
0’ = E[(A’ – B’)+]. (22)

The random variable B’ is approximately gamma-distributed16 with density

&-le-t/@

p~r(~) ‘ t >0
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1

0.0 0.02 0.04 0.C6 O.O8 0,10 0.12

FIGURE 3 The flux factor @’ as a
function of the damping constant K’
for various shot rates A’.

where the parameters a and ~ are determined by the condition th~.; E[B’] and
Var[B’] equal the mean and the variance, respectively, of the gamma distribution.
@’ = @’(tc’, A’) is plotted in Figure 3. Additional details are available from Frey and
Simui.8

SUMMARY

Noise can cause multistable dynamical systems to exhibit chaotic motion with sen-
sitive dependence upon initial conditions. The theory applicable to noise-induced
chaotic dynamics reviewed in this paper rests primarily on the concept of the Mel-
nikov transform and on techniques for approximating noise with any given spectrum
and marginal distribution by uniformly bounded, ensemble uniformly continuous
processes. The results described here apply to weakly perturbed, one-degree-of-
freedom dynamical systems featuring homoclinic or heteroclinic orbits. Results were
first given for additive perturbation and then generalized to multiplicative pertur-
bation. Extensions of this work to higher-degree-of-freedom systems and to spatially
extended systems are in progress.
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